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Quantum dot as a single-electron transistor 
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Coulomb blockade? 
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Charge qubit 
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Superconducting charge qubit Y. Nakamura et al.  

Nature 398, 786 (1999) 
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Spin qubit 
F. H. Koppens et al. Nature 442, 766 (2006) 
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Spin qubit 
F. H. Koppens et al. Nature 442, 766 (2006) 
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The Fano effect 
Ugo Fano 
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Distortion of Coulomb Oscillation 
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Effect of magnetic flux 
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K. Kobayashi et al. PRL 88, 256806 (`02) 



Spin state and quantum decoherence 

Akera PRB 59, 9802(`99), König & Gefen PRB65, 045316 (`02) 

Spin-flip process reduces quantum coherence 
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Coulomb oscillation and AB oscillation 

difference of coherence due to 

the parity of electron number 
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H. Aikawa et al. PRL 92, 176802 (`04) 
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The Kondo Effect 

What is happening ? 
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Fermi State 

Magnetic impurity : Screened by a Kondo cloud 
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The Kondo Effect in a Quantum Dot System 

W. G. van der Wiel et al. 

Science 289, 2105 (2000). 
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The Fano-Kondo Effect in Transport 
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T-coupled Quantum Dot-Wire Hybrid 

 U  =  0.3 - 0.7meV 

 D  = 0.3 - 0.5meV 

 Dot diameter ~ 50nm 

decoupling gate decoupling gate 

Spatially compact  

 -> high coherence 

 

Single connection point 

 -> small dot size is 

 available 



Coupling strength dependence of anti-resonance 

Decoupling gate VM 

：8mV pitch 
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“Coherent” component and the Fano-Kondo Effect 
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Problems for your report 
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Problems for your report 

Select two from the following eight problems and 

answer them. 

Submission: 

Format: Adobe pdf, MSWord, RTF or print on real papers. 

Either in Japanese or English (readable and understandable) 

 

Attachment to email 

Send it to kats  plus @issp.u-tokyo.ac.jp 

(Confirm the receipt within two days.) 

Papers: Intra-university mail to 勝本信吾  at 物性研究所 

or drop box at administration office (物理教務) 

 

Dead line: End of August, 2013 



I. Fundamentals in band theory 

(i) Show that tight-binding approximation to the simple cubit lattice  

gives the dispersion as 

Apply the same to the body-centered cubic and the face-centered  

cubit structures. 

≅ ≮  ∨ ≫  ∩ ∽ ≅ ≮  ⊡  ⊮ ≮  ⊡  ∲ ≴ ≘  
≪  ∽ ≸ ∻  ≹ ∻  ≸ 

≣ ≯ ≳ ≫  ≪  ≡ ∺ 



I. Fundamentals in band theory 

(ii) Wavefunctions at the top of valence band (G-point ) in sp3-bonding diamond 

structure semiconductors can be written to the second order of 𝑘 ∙ 𝑝 approximation 

as 
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where a and b are spin part of the wavefunction, and |𝑥 , |𝑦 , |𝑧  are just showing 

the symmetry along the axes. 

Show that these functions diagonalize the spin-orbit interaction 

≈ ≳ ≯ ∽ ≃  ≳ ≯ ≲  ∳ ∨ ≬ ⊢ ⊾ ∩ 



II Si valley structure, carrier statistics, pn junction 

(i) The conduction band bottom of Si consists of 6 

equivalent valleys close to X-points (bit inside the first 

Brillouin zone). The effective transverse mass 

𝑚𝑡 = 0.19𝑚0, the effective longitudinal mass 

𝑚𝑙 = 0.97𝑚0, which were obtained from cyclotron 

resonance. The valence band top is at the G-point. It 

has degeneracy of heavy and light hole bands as well 

as strong non-parabolicity. Averaged effective mass for 

heavy hole is 𝑚ℎℎ = 0.49𝑚0, and for light hole 

𝑚𝑙ℎ = 0.16𝑚0.  

(1-a) Calculate the effective density of states 𝑁𝑐 for the conduction band at temperature T. 

(1-b) Also obtain the effective density of states 𝑁𝑣 for the valence band. 

(1-c) Calculate the np product (ni
2) at 300K (the band gap at 300K is 1.1 eV). 

(ii) Obtain 300K built-in potential of a Si pn diode, which is abruptly doped as 

𝑛 = 1 × 1017cm3, 𝑝 = 5 × 1017cm3. Use the value of np product obtained in (1-c). 



III CV characteristics of pn diodes 

≖ ≢ ∨ ≖ ∩ ≃  ∨ ≰ ≆ ∩ 
∰ ∮ ∰ ∴ ∰ ∸ ⊡  ∰ ∮ ∲ ∳ ∸ ∰ ⊡  ∰ ∮ ∴ ∳ ∵ ∰ ⊡  ∰ ∮ ∶ ∳ ∳ ∴ ⊡  ∰ ∮ ∸ ∳ ∱ ∳ ⊡  ∱ ∮ ∰ ∲ ∹ ∶ ⊡  ∱ ∮ ∲ ∲ ∸ ∳ ⊡  ∱ ∮ ∴ ∲ ∷ ∳ 

There is a GaAs (dielectric constant 13) p+n diode grown 

with molecular beam epitaxy. Doping is abrupt and uniform 

for both p and n layers. We have cut the grown film to a 

1mm2 area and measured the differential capacitance with 

applying the (negative) bias voltage Vb and obtained the 

results summarized in the table on the left.  

 

Obtain the built-in potential in unit of V. The measured C 

contains some experimental errors.  

 

Assume that the capacitance is dominated by the doping in 

the n layer and obtain the donor concentration in the n layer 

in unit cm3. 



IV Various confinement potentials 

Choose the material as GaAs (electron effective mass 𝑚∗ = 0.067𝑚0) and 

calculate energy levels for various one-dimensional confinement (along z). 

 

(i) Quantum well with infinite barrier height and width a = 10nm. Obtain energy 

levels for ground state, 1st and 2nd excited states. 

 

(ii) The n-th eigen value of triangular potential  ≕ ∨ ≺ ∩ ∽ 
∨ ∱  ∨ ≺ ∼ ∰ ∩ 
≥ ≅ ≺ ∨ ≺ ⊸  ∰ ∩ 

for e = 105 V/cm. Refer to appendix "Eigenstates of triangular potential". 

(iii) The n-th engenvalue of harmonic potential  ≕ ∨ ≺ ∩ ∽ ≭  
⊤ ∡ ∲ 
∲ ≺ ∲ 



V Photoluminescence from quantum wells 

Al0.3Ga0.7As GaAs 



V Photoluminescence from quantum wells 

Results for d =5 nm, 7.5 nm,  

10 nm, 15 nm. 

 

T = 4K. 

Calculated confinement 

energies of quantum wells. 

 

Obtain exciton binding 

energies. 



VI Coherent transport I 

(i) Derive Landauer formula for a four terminal quantum wire with transmission  

coefficient T by using Landauer-Buettiker formalism. 

(ii) Treat an AB ring as a four terminal conductor with transmission coefficients shown in 

the following figure.  

Obtain ordinary resistance (left) and non-local resistance (right). 



VII Coherent transport II 

(i) Let MT be a transfer matrix of a potential barrier with a complex transmission 

coefficient t and a complex reflection coefficient r. Show that MT can be expressed as 

follows. 

≍ ≔  ∽ 
⋃  
∱ ∽  ≴ ⊤ ⊡  ≲  ⊤ ∽  ≴ ⊤ ⊡  ≲  ∽  ≴ ∱ ∽  ≴ 

∡  
∺  

(ii) If an AB ring is a double slit system, the probability amplitude of outgoing 

wavefunction is written as 

which gives if we put 𝜓1 = 𝜓2  and 𝜃 = −𝜋, zero. The result is apparently against 

the requirement of unitarity. Also in 𝜃 =
𝑒Φ

ℏ
+ 𝜃0, if 𝜃0 ≠ 0, Onsagar reciprocity is 

also broken (F is magnetic flux piercing through the ring). Discuss what is wrong in 

the above "double slit model". 

≪ ⋃  ≪ ∲ ∽ ≪ ⋃  ∱ ≪ ∲ ∫ ≪ ⋃  ∲ ≪ ∲ ∫ ∲ ≪ ⋃  ∱ ≪ ≪ ⋃  ∲ ≪ ≣ ≯ ≳ ⊵ ∻  



VIII Electric transport through edge modes 


