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Choose two from the following eight problems and solve them.

I. Fundamentals in band theory

(i) Show that tight-binding approximation to the simple cubit lattice gives the dispersion as

En(k) = En − αn − 2t
∑

j=x,y,x

cos kja. (1)

Apply the same to the body-centered cubic and the face-centered cubit structures.
(ii) Wavefunctions at the top of valence band (Γ-point ) in sp3-bonding diamond structure semiconductors can
be written to the second order ofk · p approximation as
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Light hole band:
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Spin split-off band:
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whereα andβ are spin part of the wavefunction, and|x⟩, |y⟩，|z⟩ are just showing the symmetry along the
axes. The upper and lower rows forα andβ correspond to the double sign± or∓.

Show that these functions diagonalize the spin-orbit interaction

Hso =
Cso

r3
(l · σ), (5)

wherel is the orbital angular momentum andσ is the vector of Pauli spin matrices.

II Si valley structure, carrier statistics, pn junction

(i) The conduction band bottom of Si consists of 6 equivalent valleys close to X-points (bit inside the first
Brillouin zone). The effective transverse massmt = 0.19m0, the effective longitudinal massml = 0.97m0,
which were obtained from cyclotron resonance. The valence band top is at theΓ-point. It has degeneracy
of heavy and light hole bands as well as strong non-parabolicity. Averaged effective mass for heavy hole is
mhh = 0.49m0, and for light holemlh = 0.16m0.

(1-a) Calculate the effective density of statesNc for the conduction band at temperatureT .

(1-b) Also obtain the effective density of statesNv for the valence band.

(1-c) Calculate thenp product (n2i ) at 300K (the band gap at 300K is 1.1 eV).

(ii) Obtain 300K built-in potential of a Si pn diode, which is abruptly doped asn =1×1017cm−3，p = 5 ×
1017cm−3. Use the value of np product obtained in (1-c).
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Figure 1: Schematic view of valley structure of Si con-
duction band. The six ellipsoidal bodies represent equi-
energy surfaces for valleys close to X points.

III CV characteristics of a GaAs pn diode

Vb (V) C (pF)
0.0 408

−0.2 380
−0.4 350
−0.6 334
−0.8 313
−1.0 296
−1.2 283
−1.4 273

There is a GaAs (dielectric constant 13) p+n diode grown with molecular beam epitaxy. Doping is abrupt
and uniform for both p and n layers. We have cut the grown film to a 1mm2 area and measured the differential
capacitance with applying the (negative) bias voltageVb and obtained the results summarized in the table on
the left.

Obtain the built-in potential in unit of V. The measuredC contains some experimental errors.
Assume that the capacitance is dominated by the doping in the n layer and obtain the donor concentration

in the n layer in the unit of cm−3.

IV Various confinement potentials

Choose the material as GaAs (electron effective massm∗ = 0.067m0) and calculate energy levels for various
one-dimensional confinement (alongz).
(i) Quantum well with infinite barrier height and widtha = 10nm. Obtain energy levels for ground state, 1st
and 2nd excited states.
(ii) The n-th eigen value of triangular potential

U(z) =

{
∞ (z < 0)

eEz (z ≥ 0).
(6)

Let E be105 V/cm. And refer to appendix “Eigenstates of triangular potential”.
(iii) The n-th engenvalue of harmonic potential,

U(z) =
m∗ω2

2
z2 (7)
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V Photoluminescence from quantum wells
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The left figure illustrates a photoluminescence exper-
iment. As shown in (a), the sample is illuminated
with (in many cases laser) light with high energy, for
electron-hole pairs to be created. The electron-hole
pairs recombine to emit photons. (b) shows a pho-
tograph of a real apparatus (4K cryostat), which has
three optical windows. Two of them are for inlet and
outlet of the laser light and the middle one is to col-
lect the luminescence from the sample.

As shown schematically in (c), such excited car-
riers migrate inside the sample, relax into the bound
states in the quantum wells and recombine. Hence if
such band to band emission dominates the lumines-
cence, the energy of emitted photons is the energy
difference between the ground states in the quantum

well for electrons and holes.
The quantum wells considered here consist of GaAs (well) and Al0.3Ga0.7As (barrier). At low tempera-

tures the band diagram for such quantum wells can be drawn as in Fig.2(a). The effective electron mass in
GaAs is0.067m0 and that for heavy hole is0.45m0. These values change in AlGaAs though the effect of the
discontinuity is not very large and here we ignore it.

Real experimental photoluminescence spectrum for quantum wellsd = 5nm, 7.5nm, 10nm, 15nm at 4K is
shown in Fig.2(a) (actually these quantum well are grown in a single film).

(i) Obtain the binding energies for the ground states of electrons and holes for the diagram in Fig.2(a), withd =
5 nm，7.5 nm，10 nm， 15 nm.
(ii) From the above results calculate the energies of photon emission for band to band transitions.
(iii) The very left two peaks in Fig.2(b) are from bulk (GaAs substrate). The remaining four peak positions
should also have some shifts from the above calculations. The shifts are due to binding energies ofexcitions.
Namely, though it is not mentioned in the present lectures, the dominant luminescence is not due to the direct
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Figure 2: (a) Energy diagram for GaAs/Al0.3Ga0.7As quantum well. (b) Photoluminescence spectrum obtained
at 4K in the experiment described here.
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transition between the bound states but from recombination in bound states (excitions) of an electron and a
hole.

Estimate the exciton binding energy for each quantum well from the above result of experiment and calcu-
lation. Does the binding energy increase or decrease with decreasing well width? C

VI Coherent transport I

(i) Derive Landauer formula for a four terminal quantum wire with transmission coefficientT by using Landauer-
Buettiker formalism.
(ii) Treat an AB ring as a four terminal conductor with transmission coefficients shown in the upper row in the
following figure.

T
0 T

1 T
21

2

3

4

V

V

Upper left: transmission coefficient between terminals 1-2 and 3-4 areT0. Similarly, middle and right mean
the coefficients areT1 for 1-3 and 2-4,T2 for 1-4 and 2-3. Lower left: circuit configuration for ordinary four
terminal resistanceRc. The symbol of overlapping two shifted open circles is a constant current source. The
encircled V is a voltmeter. Lower right is for “non-local” four terminal resistanceRnl.

Under the approximationT0 ≫ T1, T2, obtain the expression for ordinary four terminal resistanceRc,
the measurement setup for which is shown in lower left in the above figure and that for so called non-local
resistanceRnl

VII Coherent transport II

(i) Let MT be a transfer matrix of a potential barrier with a complex transmission coefficient t and a complex
reflection coefficient r. Show that MT can be expressed as follows.

MT =

(
1/t∗ −r∗/t∗
−r/t 1/t

)
. (8)

(ii) If an AB ring is a double slit system, the probability amplitude of outgoing wavefunction is written as

|ψ|2 = |ψ1|2 + |ψ2|2 + 2|ψ1||ψ2| cos θ (9)

which gives if we put|ψ1| = |ψ2| andθ = −π, zero. The result is apparently against the requirement of
unitarity. Also inθ = eΦ/~ + θ0, if θ ̸= 0, Onsager reciprocity is also broken (Φ is magnetic flux piercing
through the ring). Discuss what is wrong in the above “double slit model”.
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VIII Electric transport through edge modes
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Let us consider a sample in the shape called “Hall
bar”, which is illustrated in the left figure. The main
difference between the present sample and ordinary
Hall bar samples is a quantum point contact (QPC)
placed in the center of the sample. Now a perpen-
dicular magnetic field is applied and the sample is in
the integer quantum Hall effect with the filling factor
ν. Let the QPC be a state through whichχ channels
of the edge modes pass and the rests are reflected. A
current source is connected to terminals 1 and 4. The
chemical potentials of other terminals can be mea-
sured with ideal potentiometers.

Obtain the following quantities with Landauer-
Büttiker formula.

(i) The longitudinal resistanceRL determined from the voltage between 2 and 3 (or 5 and 6).

(ii) The longitudinal resistanceRH determined from the voltage between 2 and 6 (or 3 and 5).

Appendix: Eigenstates in a triangular potential

Let us consider one dimensional triangular potential onx-axis. The time independent Schrödinger equation is
written as (

− ~2

2m

∂2

∂x2
+ V (x)

)
ψ = Eψ, V (x) =

{
ax (x > 0, a > 0)

∞ (x ≤ 0)
. (10)

With adopting the transformation of the variable

s =

(
2ma

~2

)1/3(
x− E

a

)
, (11)

the Schr̈odinger equation is transformed into

d2ψ

ds2
= sψ. (12)
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Figure 3: (a) illustrates a triangular potential. (b) illustrates Airy functions.
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Figure 4: (a) illustrates eigenenergies and eigenfunctions in a triangular potential forn = 1, 2, 3 from the
ground state. (b) Let∆x be the intervals of zero points in Airy function. In this figure1/∆x is plotted against
the midpoints between the zero points. The broken line is Airy function.

The equation is now in the form of differential equation called Airy’s (or Stokes’) differential equation.
The solutions to (12) are calledAiry functions and classified with the asymptotic behavior ins → ∞ into

Ai for ψ → 0 and Bi forψ → ∞. Some representatives of them are plotted in Fig.3(b).
As basis for the bound state wavefuntions, we should adopt Ai, which are zero at infinity. The asymptotic

form for s→ ±∞ is given as

Ai(s) ∼ 1

2
√
πs1/4

exp

(
−2

3
s3/2

)
(s→ ∞) (13)

∼ 1
√
π|s|1/4

cos

(
2

3
|s|3/2 − π

4

)
(s→ −∞). (14)

In x < 0, V = ∞ andψ = 0, the boundary condition atx = 0 is thusψ(+0) = 0. Ai(s) has many
zeros and the boundary condition requires that one of which must fit tox = 0. Let us write such zero points as
s1, s2, · · · sn, · · · in the order of the absolute value ofs, then the energy eigenvalueEn is obtained from (11) as

En = −
(
~2a2

2m

)1/3

sn. (15)

From the asymptotic form (14),

sn ∼ −
(
3π(4n− 1)

8

)2/3

(16)

is the asymptotic solution ofsn for n→ ∞.
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