「半導体」 6/3, 6/10 の問題

解答の提出は任意です.何問解いてもらっても構いません.レポート提出時までに出せば結構ですが,問題を出した翌週に提出することで,理解も進むと思います.提出時には,何日の問題の何番か,学生証番号,名前を明記してください.紙で授業の終了時に出してもらっても,学内便でも,eamil 添付でも結構です.

提出していただいた問題解答の採点結果は,若干ですが,レポートの点に加点いたします.

- 1. Si は,ブリルアンゾーンの X 点と呼ばれる位置よりやや Γ 点よりに伝導帯の底 (谷) を持つ.第1ブリルアンゾーンの中には 6 つの等価な X 点があって,従って 6 つの谷は縮退している.各谷は楕円体形状をしており,異方的有効質量は, m_t (楕円体の円形断面方向,effective transverse mass) が $0.19m_0$, m_l (楕円断面のもう1つの軸方向,effective longitudinal mass) が $0.97m_0$ とサイクロトロン共鳴により測定されている(図 1).価電子帯の頂上はブリルアンゾーン中央の Γ 点にあり,非放物線性が強く有効質量の明瞭な定義は困難であるが,平均的な有効質量として,重い正孔 $m_{hh}=0.49m_0$,軽い正孔 $m_{lh}=0.16m_0$ が得られている.
 - (1-a) 伝導帯有効状態密度 N_c を求めよ.絶対温度を T とする.
 - (1-b) 価電子帯有効状態密度 N_v を求めよ .
 - (1-c) Si のエネルギーギャップは温度に依存するが,室温のギャップを $1.1 \mathrm{eV}$ として室温 $(300\mathrm{K})$ の np 積 (n_i^2) を求めよ.
- 2. 室温で, $n=1\times 10^{17}{
 m cm}^{-3}$, $p=5\times 10^{17}{
 m cm}^{-3}$ となるように階段的にドープした ${
 m Si}$ の ${
 m pn}$ ダイオードがある.室温($300{
 m K}$)での造り付けポテンシャルの大きさを求めよ.計算には上の問題で求めた純粋 ${
 m Si}$ のキャリア濃度の積 n_i^2 を使用せよ.
- $3.~{
 m GaAs}$ (比誘電率 13) の ${
 m p^+n}$ 接合を ${
 m MBE}$ で作製した.ドープは ${
 m n}$ 側も ${
 m p}$ 側も空間的に一様に行っている. $1{
 m mm^2}$ の断面積に切り出して,バイアス電圧 $V_{
 m b}$ を負側 (逆バイアス側)

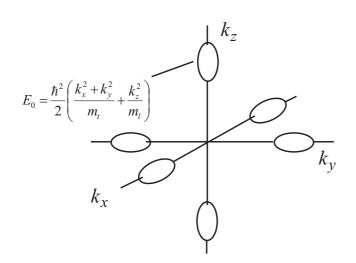


図 1 Si の伝導帯谷構造の模式図 . 図中に示したような等エネルギー楕 円体面を描いたもの .

に加えながら微分静電容量を測定したところ,次の表のような結果を得た.

$V_{\rm b}$ (V)	C (pF)
0.0	408
-0.2	380
-0.4	350
-0.6	334
-0.8	313
-1.0	296
-1.2	283
-1.4	273

この結果から,造り付けポテンシャルの大きさ(単位 Volt)を求めよ.C には測定誤差を含めてあるが,フィッティングは定規で引く程度でもよいし,本格的にフィットをして誤差を推定してもらっても良い.また,静電容量は n 側で決まっていると考え,n 側のドナー濃度 (単位 cm^{-3}) を求めよ.

- 4. 障壁高さが $e(\phi_M-\phi_S)$ で決まるような理想的なショットキー障壁ダイオードについて , 逆方向電圧 V を加えた時の微分静電容量を求めなさい .
- 5. 障壁高さが 0.5 電子ボルトであるようなショットキー障壁を使用し,MESFET を作る. 比誘電率が 16,伝導チャネルのドナー濃度が $2\times10^{16}{\rm cm}^{-3}$ だとすると, $0.5\mu{\rm m}$ 厚さの伝 導チャネルをピンチオフするためには何ボルトのゲート電圧が必要か.