低温物理学

2009年5月28日 物性研究所

勝本信吾

The Kondo effect in dilute magnetic alloy

The Impurity Anderson Model

$$H = H_{\text{leads}} + H_{\text{dot}} + H_{\text{T}}$$
(141)

$$H_{\text{dot}} = \sum_{\sigma} \epsilon_0 d_{\sigma}^{\dagger} d_{\sigma} + U d_{\uparrow}^{\dagger} d_{\uparrow} d_{\downarrow}^{\dagger} d_{\downarrow},$$
(142)

$$H_{\text{leads}} = \sum_{\alpha = L,R} \sum_{k\sigma} \epsilon_k c_{\alpha,k\sigma}^{\dagger} c_{\alpha,k\sigma},$$
(143)

$$H_{\text{T}} = \sum_{\alpha = L,R} \sum_{k\sigma} (\underline{\gamma_{\alpha}} c_{\alpha,k\sigma}^{\dagger} d_{\sigma} + \text{h.c.}).$$
(144)
Unitary transformation

$$\begin{cases} c_{k\sigma} = (\gamma_L^* c_{L,k\sigma} + \gamma_R^* c_{R,k\sigma})/\gamma, \\ \bar{c}_{k\sigma} = (-\gamma_R c_{L,k\sigma} + \gamma_L c_{R,k\sigma})/\gamma, \end{cases} \gamma^2 \equiv \gamma_L^2 + \gamma_R^2$$
(147)

$$H_T = \sum_{k,\sigma} [(\gamma_L c_{L,k\sigma}^{\dagger} + \gamma_R c_{R,k\sigma}^{\dagger}) d_{\sigma} + \text{h.c.}]$$
(148)

Co-tunneling process and 2nd order perturbation

s-d Hamiltonian

$$\begin{split} &\sum_{k\sigma} \frac{\gamma^2}{\Delta E^-} d^{\dagger}_{\sigma} d_{\sigma} + \sum_{kk'\sigma} \frac{\gamma^2}{\Delta E^+} c^{\dagger}_{k'\sigma} c_{k\sigma} \\ &+ \sum_{kk'} \gamma^2 \left(\frac{1}{\Delta E^+} + \frac{1}{\Delta E^-} \right) (c^{\dagger}_{k'\uparrow} c_{k\uparrow} d^{\dagger}_{\uparrow} d_{\uparrow} + c^{\dagger}_{k'\downarrow} c_{k\downarrow} d^{\dagger}_{\downarrow} d_{\downarrow} + c^{\dagger}_{k'\uparrow} c_{k\downarrow} d^{\dagger}_{\downarrow} d_{\uparrow} + c^{\dagger}_{k'\downarrow} c_{k\uparrow} d^{\dagger}_{\uparrow} d_{\downarrow}). \\ &c^{\dagger}_{k'\uparrow} c_{k\uparrow} d^{\dagger}_{\uparrow} d_{\uparrow} + c^{\dagger}_{k'\downarrow} c_{k\downarrow} d^{\dagger}_{\downarrow} d_{\downarrow} \\ &= \frac{1}{2} (c^{\dagger}_{k'\uparrow} c_{k\uparrow} - c^{\dagger}_{k'\downarrow} c_{k\downarrow}) (d^{\dagger}_{\uparrow} d_{\uparrow} - d^{\dagger}_{\downarrow} d_{\downarrow}) + \frac{1}{2} (c^{\dagger}_{k'\uparrow} c_{k\uparrow} + c^{\dagger}_{k'\downarrow} c_{k\downarrow}) (d^{\dagger}_{\uparrow} d_{\uparrow} + d^{\dagger}_{\downarrow} d_{\downarrow}) \\ &\hat{S}_z = \frac{1}{2} (d^{\dagger}_{\uparrow} d_{\uparrow} - d^{\dagger}_{\downarrow} d_{\downarrow}), \quad \hat{S}_+ = d^{\dagger}_{\uparrow} d_{\downarrow}, \quad \hat{S}_- = d^{\dagger}_{\downarrow} d_{\uparrow} \quad \text{Dot spin operators} \\ &H_d = \sum_{kk'\sigma} \gamma^2 \left[\frac{1}{\Delta E^+_k} - \frac{1}{2} \left(\frac{1}{\Delta E^+_{k'}} + \frac{1}{\Delta E^-_{k'}} \right) \right] c^{\dagger}_{k'\sigma} c_{k\sigma} \\ &H_{sd} = \sum_{kk'} \gamma^2 \left[\frac{1}{\Delta E^+_k} + \frac{1}{\Delta E^-_{k'}} \right] \left[\hat{S}_+ c^{\dagger}_{k'\downarrow} c_{k\uparrow} + \hat{S}_- c^{\dagger}_{k'\uparrow} c_{k\downarrow} - c^{\dagger}_{k'\uparrow} c_{k\downarrow} \right] \end{split}$$

s-d Hamiltonian (2)

$$J = \gamma^{2} \left(\frac{1}{\Delta E^{+}} + \frac{1}{\Delta E^{-}} \right)$$

$$H_{d} = \sum_{kk'} \left(-\frac{J}{2} \right) c^{\dagger}_{k'\sigma} c_{k\sigma}$$

$$H_{sd} = J \sum_{kk'} \left[\hat{S}_{+} c^{\dagger}_{k'\downarrow} c_{k\uparrow} + \hat{S}_{-} c^{\dagger}_{k'\uparrow} c_{k\downarrow} + \hat{S}_{z} (c^{\dagger}_{k'\uparrow} c_{k\uparrow} - c^{\dagger}_{k'\downarrow} c_{k\downarrow}) \right]$$

$$= J \sum_{j} \left[(\hat{S}_{x} + i\hat{S}_{y}) (\hat{s}_{xj} - i\hat{s}_{yj}) + (\hat{S}_{x} - i\hat{S}_{y}) (\hat{s}_{xj} + i\hat{s}_{yj}) + 2\hat{s}_{zj} \hat{S}_{z} \right]$$

$$= 2J \sum_{j} \hat{s}_{j} \cdot \hat{S} \qquad \text{anti-ferromagnetic interaction}$$

$$\hat{T} = \frac{H_{T}}{\sqrt{1}} + H_{T} \frac{1}{\epsilon - H_{0} + i\delta} H_{T} + \cdots \qquad \uparrow k \qquad \uparrow k'$$

$$\langle d\uparrow; k'\uparrow |\hat{T}^{(1)}|d\uparrow; k\uparrow\rangle = J/2 \qquad \uparrow$$

No spin-flip process

Spin flip process: Kondo anomaly

The Kondo singlet

Many body resonance — multiple scattering with many electrons of the same energy (Fermi energy) with quantum entanglement in spin — Spatially localized state, energy level is the same as the Fermi energy

The Kondo effect in quantum dot systems

Molecular Beam Epitaxy

GaAs

Semiconductor heterostructure

AB ring made of 2DES at a hetrointerface

Coulomb oscillation and Coulomb diamond in a semiconductor quantum dot

量子ポイントコンタクト

Quantum Point Contact (QPC)

量子細線の4端子抵抗測定

R. de Picciotto et al. Nature **411**, 51 (2001)

Aharonov-Bohm 効果の観測

R. A. Webb et al. PRL 54, 1610 (1985).

AB効果の非局所測定

2つの端子配置での位相変化

expected equi-phase curves

非局所AB効果に対するOnsagerの相反定理

